The network model of existing mask wearing detection methods have large number of parameters and calculation. To improve these shortcomings, this paper proposed a lightweight mask wearing detection method based on improved YOLOv5. This method replaced the original convolution module by Ghost module reducing the model parameters and computation. This method used lightweight attention mechanism and Transformer self-attention module to make the model more focused on important information to improve accuracy. This method used Alpha-CIoU loss function to enhance the accuracy of bounding box regression. At last, this method used knowledge distillation to boost the detection performance of small model. The results of the experiment show that this method reduced the number of parameters, computation amount and model size to 57.3%, 51.83% and 58.54%, and improved the mAP by 0.7%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on detection method of mask wearing based on improved YOLOv5


    Beteiligte:
    Chen, Jianyang (Autor:in) / Wang, Xiuling (Autor:in) / Zhang, Renqing (Autor:in) / Chen, Ying (Autor:in) / Du, Guangzhen (Autor:in)


    Erscheinungsdatum :

    12.10.2022


    Format / Umfang :

    1702755 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    STD-Yolov5: a ship-type detection model based on improved Yolov5

    Ning, Yue / Zhao, Lining / Zhang, Can et al. | Taylor & Francis Verlag | 2024


    Research on ship detection technology based on improved YOLOv5

    Huan, Yutai / Chen, Lin / Liu, Bin et al. | IEEE | 2023




    Lightweight pear detection algorithm based on improved YOLOv5

    Hu, Xiaomei / Zhang, Yunyou / Chen, Yi et al. | SPIE | 2023