Tracking space noncooperative targets, including disabled and mobile spacecrafts, remains a challenging problem. This article develops two reinforcement-learning-based parameter-self-tuning controllers for the following two different tracking cases: case A, tracking a disabled target, and case B, tracking a mobile target. An adaptive controller consisting of five model uncertainties is adopted for case A, and a modified PD controller is derived for case B. The actor–critic framework is employed to reduce the initial control accelerations for case A and to improve the terminal tracking accuracy for case B. Relations between control parameters and tracking errors are found through the fuzzy inference system. Finally, the reinforcement learning is used to select suitable control parameters for achieving desired purposes. Numerical experimental results validate the effectiveness of the proposed algorithms on reducing initial control accelerations for case A and improving the terminal tracking accuracy for case B.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Design of Parameter-Self-Tuning Controller Based on Reinforcement Learning for Tracking Noncooperative Targets in Space


    Beteiligte:
    Wang, Xiao (Autor:in) / Shi, Peng (Autor:in) / Wen, Changxuan (Autor:in) / Zhao, Yushan (Autor:in)


    Erscheinungsdatum :

    01.12.2020


    Format / Umfang :

    2346228 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Space Noncooperative Object Active Tracking With Deep Reinforcement Learning

    Zhou, Dong / Sun, Guanghui / Lei, Wenxiao et al. | IEEE | 2022




    Tracking of Noncooperative Airborne Targets Using ADS-B Signal and Radar Sensing

    Ming-Shih Huang / Ram M. Narayanan / Yan Zhang et al. | DOAJ | 2013

    Freier Zugriff

    BiGAT: A Model for Recognizing Motion Intentions of Space Noncooperative Targets

    Sun, Qinbo / Zhao, Liran / Dang, Zhaohui | IEEE | 2025