The uncertain behavior of surrounding vehicles in lane changing scenario is one of the most potential risk for the autonomous vehicle. Trajectory prediction plays a critical role in the condition of safe obstacle avoidance. Considering the partial observable state of the surrounding vehicles, trajectory prediction model of surrounding vehicles for autonomous vehicle based on POMDP (Partially Observable Markova Decision Process) principle have been proposed in this paper. The driver's intention recognition and the vehicle trajectory have been applied to train the prediction model parameters. The experiment has been implemented with NGSIM traffic data set. Experimental results show that the trajectory prediction model we proposed can predict the trajectory accurately. Results of preview time ahead have dramatic advancement with performance surpassing classic method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Trajectory Prediction of Surrounding Vehicles for Autonomous Vehicle Using POMDP Method


    Beteiligte:
    Zhang, Junfeng (Autor:in) / Zhen, Guofeng (Autor:in) / Jia, Hanjie (Autor:in) / Wei, Hanbing (Autor:in)


    Erscheinungsdatum :

    23.09.2022


    Format / Umfang :

    4185790 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Parametric trajectory prediction of surrounding vehicles

    Kang, Chang Mook / Jeon, Soo Jung / Lee, Seung-Hi et al. | IEEE | 2017


    TRAJECTORY PREDICTION OF SURROUNDING VEHICLES USING PREDEFINED ROUTES

    NGUYEN TRONG-DUY / INOU HIROSHI | Europäisches Patentamt | 2021

    Freier Zugriff

    Trajectory prediction of surrounding vehicles using predefined routes

    NGUYEN TRONG-DUY / INOU HIROSHI | Europäisches Patentamt | 2022

    Freier Zugriff

    SURROUNDING VEHICLE TRAJECTORY PREDICTION AND DYNAMIC SPEED PLANNING FOR AUTONOMOUS VEHICLE IN CUT-IN SCENARIOS

    Xiong, Lu / Fu, Zhiqiang / Zeng, Dequan et al. | British Library Conference Proceedings | 2021