Artificial Intelligence (AI) is revolutionizing the modern society. In the automotive industry, researchers and developers are actively pushing deep learning based approaches for autonomous driving. However, before a neural network finds its way into series production cars, it has to first undergo strict assessment concerning functional safety. The chances and challenges of incorporating deep learning for self-driving cars are presented in this paper.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Learning for Self-Driving Cars: Chances and Challenges


    Beteiligte:
    Rao, Qing (Autor:in) / Frtunikj, Jelena (Autor:in)


    Erscheinungsdatum :

    01.05.2018


    Format / Umfang :

    1051781 byte



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep Learning Based Self Driving Cars Using Computer Vision

    Bhaggiaraj, S. / Priyadharsini, M. / Karuppasamy, K. et al. | IEEE | 2023


    Predicting Steering Actions for Self-Driving Cars Through Deep Learning

    Ou, Chaojie / Bedawi, Safaa Mahmoud / Koesdwiady, Arief B. et al. | IEEE | 2018



    SELF DRIVING CARS

    KIM SI HYEONG / HAN YURIM / YEON HEE LEE et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Explainable deep learning improves human mental models of self-driving cars

    Kenny, Eoin M. / Dharmavaram, Akshay / Lee, Sang Uk et al. | ArXiv | 2024

    Freier Zugriff