This paper presents a novel method for modeling of interaction among multiple moving objects to detect traffic accidents. The proposed method to model object interactions is motivated by the motion of water waves responding to moving objects on water surface. The shape of the water surface is modeled in a field form using Gaussian kernels, which is referred to as the Motion Interaction Field (MIF). By utilizing the symmetric properties of the MIF, we detect and localize traffic accidents without solving complex vehicle tracking problems. Experimental results show that our method outperforms the existing works in detecting and localizing traffic accidents.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Motion Interaction Field for Accident Detection in Traffic Surveillance Video


    Beteiligte:
    Yun, Kimin (Autor:in) / Jeong, Hawook (Autor:in) / Yi, Kwang Moo (Autor:in) / Kim, Soo Wan (Autor:in) / Choi, Jin Young (Autor:in)


    Erscheinungsdatum :

    01.08.2014


    Format / Umfang :

    866477 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Intelligent Traffic Accident Detection System Using Surveillance Video

    Sun, Pengfei / Liu, Qinghe | British Library Conference Proceedings | 2022


    Intelligent Traffic Accident Detection System Using Surveillance Video

    Sun, Pengfei / Liu, Qinghe | Springer Verlag | 2022



    Drone based accident,traffic surveillance

    JOHANN HIEBL | Europäisches Patentamt | 2018

    Freier Zugriff