With the ever-increasing demand in the analysis and understanding of aerial images in order to remotely recognize targets, this paper introduces a robust system for the detection and localization of cars in images captured by air vehicles and satellites. The system adopts a sliding-window approach. It compromises a window-evaluation and a window-classification subsystems. The performance of the proposed framework was evaluated on the Vaihingen dataset. Results demonstrate its superiority to the state of the art.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Car Detection in Aerial Images of Dense Urban Areas


    Beteiligte:


    Erscheinungsdatum :

    01.02.2018


    Format / Umfang :

    2624836 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Building Detection from Multiple Aerial Images in Dense Urban Areas

    Fradkin, M. / Maitre, H. / Roux, M. | British Library Online Contents | 2001





    Securing UAV Networks for Dense Urban Areas

    Duo, Bin / Yuan, Xiaojun / Liu, Yifan | Springer Verlag | 2023