We present a theory of generalized non-separable two dimensional (2-D) discrete Gabor expansions (DGE). We show that a DGE is essentially a general frame decomposition. Using this theory, we show that a non-separable 2-D analysis sequence can also be the translation and modulation of a single 2-D function /spl gamma/. A novel algorithm for computing all possible nonseparable 2-D /spl gamma/ is also derived. The non-separable 2-D DGE scheme is useful, e.g., in applications where the orientation of the 2-D Gabor analysis window is important.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A generalized non-separable 2-D discrete Gabor expansion for image representation and compression


    Beteiligte:
    Shidong Li (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    409798 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Generalized Non-Separable 2-D Discrete Gabor Expansion for Image Representation and Compression

    Li, S. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994


    Image Representation Using Non-Canonical Discrete Multiwindow Gabor Frames

    Subbanna, N. K. / Zeevi, Y. Y. / Visual Information Engineering Network (Institution of Engineering and Technology) | British Library Conference Proceedings | 2006


    Image representation and compression via adaptive multi-Gabor representations [3456-09]

    Li, S. / SPIE | British Library Conference Proceedings | 1998


    Gabor function-based medical image compression

    Anderson, M. P. / Loew, M. H. / Brown, D. G. | British Library Online Contents | 1995


    Separable Gabor filter realization for fast fingerprint enhancement

    Areekul, V. / Watchareeruetai, U. / Suppasriwasuseth, K. et al. | IEEE | 2005