The global nearest pattern (GNP) approach to data association is closely related to the global nearest neighbor (GNN) problem, and both require that a cost of non-assignment of tracks be established. The existing theory for GNN can be reasonably applied to GNP problems, but adjustments are required to optimally account for bias estimation and uncertainty in GNP. These adjustments are presented along with Monte Carlo analysis showing the achieved performance is nearly optimal.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimal Non-Assignment Costs for the GNP Problem


    Beteiligte:
    Levedahl, Mark (Autor:in) / Glass, John D. (Autor:in)


    Erscheinungsdatum :

    01.03.2020


    Format / Umfang :

    3536532 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Dynamic User Optimal Assignment Problem Based on Greenshields Model

    Ren, H. / Gao, Z. / Lian, A. et al. | British Library Conference Proceedings | 2006


    An equivalent optimization formulation for the traffic assignment problem with asymmetric linear costs

    Grange, Louis de / Muñoz, Juan Carlos | Taylor & Francis Verlag | 2009