Testing of autonomous vehicles is a crucial step to ensure safety, but it can be costly and time-consuming. Virtual testing can be a solution to reduce these costs and time limitations. However, it is necessary to evaluate the reliability of virtual testing before it can be used as a replacement for specific field tests. Especially deep learning (DL) models in automated driving systems (ADS) can be sensitive to the data they encounter. In this work, we propose a cascade method to evaluate the reliability of virtual testing for DL models in autonomous driving. This method considers both the scenario level and the model level to identify the origins of the reality gap concerning scenario modeling, the fidelity of the simulation environment, and the model performance. We show an exemplary case study to demonstrate the method, which focuses on the object tracking task in autonomous driving. Based on the case study, we identify several challenges at different stages of the virtual testing pipeline. The result of this work can be used to improve the reliability of virtual testing for DL models in autonomous driving via calibrating the pipeline according to the identified challenges.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Assessing Reliability of Virtual Testing for Deep Learning Models in Autonomous Vehicles


    Beteiligte:
    Lan, Tianxiang (Autor:in) / Schade, Nick (Autor:in) / Pannek, Jurgen (Autor:in)


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    3471232 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep Learning & Autonomous Vehicles

    Seidl, R. | TIBKAT | 2018


    Accelerate the autonomous vehicles reliability testing in parallel paradigm

    Huang, WuLing / Lv, Yisheng / Chen, Long et al. | IEEE | 2017


    WEIGHT SHARING BETWEEN DEEP LEARNING MODELS USED IN AUTONOMOUS VEHICLES

    DONDERICI BURKAY | Europäisches Patentamt | 2023

    Freier Zugriff

    Assessing surprise for autonomous vehicles

    DINPARASTDJADID AZADEH / ENGSTROM JOHAN / CHEN HAOYU et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    ASSESSING SURPRISE FOR AUTONOMOUS VEHICLES

    DINPARASTDJADID AZADEH / ENGSTROM JOHAN / CHEN HAOYU et al. | Europäisches Patentamt | 2024

    Freier Zugriff