The inability of airport capacity to meet the growing air traffic demand is a major cause of congestion and costly delays. Airport capacity management (ACM) in a dynamic environment is crucial for the optimal operation of an airport. This paper reports on a novel method to attack this dynamic problem by integrating the concept of receding horizon control (RHC) into a genetic algorithm (GA). A mathematical model is set up for the dynamic ACM problem in a multiairport system where flights can be redirected between airports. A GA is then designed from an RHC point of view. Special attention is paid on how to choose those parameters related to the receding horizon and terminal penalty. A simulation study shows that the new RHC-based GA proposed in this paper is effective and efficient to solve the ACM problem in a dynamic multiairport environment


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multiairport Capacity Management: Genetic Algorithm With Receding Horizon


    Beteiligte:
    Xiao-Bing Hu, (Autor:in) / Wen-Hua Chen, (Autor:in) / Di Paolo, E. (Autor:in)


    Erscheinungsdatum :

    01.06.2007


    Format / Umfang :

    332557 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Genetic Algorithm with Dynamic Receding Horizon for Airport Capacity Management

    Liu, Jun Qiang ;Guan, Xiao Ling | Trans Tech Publications | 2011


    Receding horizon state estimator

    AHN HEEJIN / DANIELSON CLAUS | Europäisches Patentamt | 2021

    Freier Zugriff

    RECEDING HORIZON STATE ESTIMATOR

    AHN HEEJIN / DANIELSON CLAUS | Europäisches Patentamt | 2021

    Freier Zugriff

    Receding Horizon State Estimator

    AHN HEEJIN / DANIELSON CLAUS | Europäisches Patentamt | 2021

    Freier Zugriff