In this paper, we address the joint maximum-likelihood detection of power-domain non-orthogonal multiple access and transform the detection problem into a binary optimization problem. Then, we solve it by a quantum algorithm, Grover adaptive search (GAS), and further accelerate the algorithm. Assuming fault-tolerant quantum computing, GAS provides a quadratic speedup for binary optimization problems in terms of query complexity. The proposed method designs the number of Grover operators using a time-invariant distribution of the number of solutions, which can be obtained in advance. Simulation results demonstrate that the proposed method is capable of reducing the query complexity in the classical domain while achieving the optimal performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Grover Adaptive Search for Joint Maximum-Likelihood Detection of Power-Domain Non-Orthogonal Multiple Access


    Beteiligte:


    Erscheinungsdatum :

    01.06.2023


    Format / Umfang :

    1035556 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Grover Adaptive Search for Maximum Likelihood Detection of Generalized Spatial Modulation

    Yukiyoshi, Kein / Mikuriya, Taku / Rou, Hyeon Seok et al. | IEEE | 2024