This study investigates the application of ensemble learning techniques for automatic modulation classification (AMC) in a reflective intelligent surface (RIS)-aided wireless communication system. The transmitter is considered to utilize five possible phase-shift keying and quadrature-amplitude modulation schemes for data transmission. The receiver extracts cumulant-based and spectral-based features from the received data, and employs three ensemble classifiers, namely XGBoost, LightGBM, and Random Forest for AMC. Furthermore, the important features for each classifier are identified, and their performance is computed and compared with the classifiers using all the features. Numerical results show that the LightGBM classifier performs the best in terms of AMC for the considered system and effectively classifies the modulation schemes at low signal-to-noise ratio values.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automatic Modulation Classification in RIS-Assisted Wireless Communication Systems using Ensemble Learning Techniques


    Beteiligte:


    Erscheinungsdatum :

    10.10.2023


    Format / Umfang :

    1094980 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Automatic Modulation Recognition in Wireless Communication Systems Using Feature-Based Approach

    Almohamad, Tarik Adnan / Salleh, M. F. M. / Mahmud, Mohd Nazri et al. | Springer Verlag | 2019


    Automatic Modulation Recognition in Wireless Communication Systems Using Feature-Based Approach

    Almohamad, Tarik Adnan / Salleh, M. F. M. / Mahmud, Mohd Nazri et al. | TIBKAT | 2019


    MobileAmcT: A Lightweight Mobile Automatic Modulation Classification Transformer in Drone Communication Systems

    Hongyun Fei / Baiyang Wang / Hongjun Wang et al. | DOAJ | 2024

    Freier Zugriff