Trajectory forecasting to generate plausible pedestrian trajectories in crowded scenes requires an understanding of human-human social interactions. Groups of pedestrians with the social norm move along similar trajectories, while groups of pedestrians with different norms make changes to their trajectories to avoid a collision. This paper introduces a group-based forecasting module for modeling inter- and intra-group interactions to enable an understanding of the social norm of humans for trajectory forecasting. In addition, group-based forecasting module takes the trajectory predicted by another prospection module as input to consider potential interactions with other groups in the future. In this way, our method models the complex group-level social interactions in crowded scenes through the attention mechanism and predicts socially plausible trajectories in accordance with each social norm. Comparisons we conducted with state-of-the-art forecasting methods show the effectiveness of our approach on three publicly available crowd datasets (ETH, UCY, and SDD). From experimental results, our network enables to predict plausible social trajectories by introducing two forecasting modules.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Utilizing Human Social Norms for Multimodal Trajectory Forecasting via Group-Based Forecasting Module


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.01.2023


    Format / Umfang :

    14910772 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Object trajectory forecasting

    IVANOVIC BORIS / LIN YIFENG / SHRIVASTAVA SHUBHAM et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    OBJECT TRAJECTORY FORECASTING

    IVANOVIC BORIS / LIN YIFENG / SHRIVASTAVA SHUBHAM et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Data-Driven Vehicle Trajectory Forecasting

    Jawed, Shayan / Boumaiza, Eya / Grabocka, Josif et al. | ArXiv | 2019

    Freier Zugriff

    Safety-Compliant Generative Adversarial Networks for Human Trajectory Forecasting

    Kothari, Parth / Alahi, Alexandre | IEEE | 2023

    Freier Zugriff

    Human Trajectory Forecasting in Crowds: A Deep Learning Perspective

    Kothari, Parth / Kreiss, Sven / Alahi, Alexandre | IEEE | 2022

    Freier Zugriff