This paper presents sliding-mode-observer (SMO)-based adaptive sliding mode control (SMC) and neural network (NN) control for effective tracking of the slip ratio applicable to electric vehicles (EVs) and hybrid EVs (HEVs), where electric motors are used to achieve braking in addition to propulsion. The proposed SMO alleviates the difficulty in choosing its gains. To adapt the road condition parameter for better performance, a Lyapunov-based adaptation is integrated with the sliding-mode controller. The resulting adaptive controller performs very well in achieving slip tracking in the face of parameter uncertainties. Furthermore, to cope up with the uncertainties and unknown nonlinearity involved with the vehicle slip dynamics, a nonmodel-based NN controller is developed using the function approximation properties of the multilayer perceptrons.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Sliding-Mode-Observer-Based Adaptive Slip Ratio Control for Electric and Hybrid Vehicles


    Beteiligte:
    Subudhi, B. (Autor:in) / Shuzhi Sam Ge, (Autor:in)


    Erscheinungsdatum :

    01.12.2012


    Format / Umfang :

    488614 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

    Ren, Bingtao / Chen, Hong / Wang, Jinsong et al. | SAE Technical Papers | 2018


    A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

    Ren, Bingtao / Deng, Weiwen / Chen, Hong et al. | British Library Conference Proceedings | 2018


    Neural Network-Based Adaptive Sliding Mode Control for Wheel Slip Ratio Control System

    Li, Junhua / Cai, William / Zhou, Minghao et al. | Springer Verlag | 2025