When we apply neural networks to safety-critical systems such as self-driving cars, the reliability of their predictions must be considered. However, recent deep neural networks have tended to output biased confidence. Additionally, the extent of confidence bias estimated by object detectors varies depending on factors such as the detected object’s position and size. To address this problem, many researchers have proposed methods for calibrating confidences estimated by object detectors. In this study, we investigate the factors that may cause bias in the confidence of LiDAR-based 3D object detectors and show that our calibration method compensates for the effect of these factors to provide reliable confidence estimations, regardless of the neural network model used or the situations in which objects are detected.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Conditional Confidence Calibration Method for 3D Point Cloud Object Detection


    Beteiligte:
    Kato, Yoshio (Autor:in) / Kato, Shinpei (Autor:in)


    Erscheinungsdatum :

    05.06.2022


    Format / Umfang :

    845451 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Confidence Calibration for Object Detection and Segmentation

    Küppers, Fabian / Haselhoff, Anselm / Kronenberger, Jan et al. | Springer Verlag | 2022

    Freier Zugriff

    MULTICLASS CONFIDENCE AND LOCALIZATION CALIBRATION FOR OBJECT DETECTION

    PATHIRAJA BIMSARA / GUNAWARDHANA MALITHA / KHAN MUHAMMAD HARIS | Europäisches Patentamt | 2025

    Freier Zugriff

    Adaptivity of conditional random field based outdoor point cloud classification

    Lang, D. / Friedmann, S. / Paulus, D. | British Library Online Contents | 2016


    Real-Time Point Cloud Object Detection via Voxel-Point Geometry Abstraction

    Shi, Guangsheng / Wang, Ke / Li, Ruifeng et al. | IEEE | 2023


    Ground estimation and point cloud segmentation using SpatioTemporal Conditional Random Field

    Rummelhard, Lukas / Paigwar, Anshul / Negre, Amaury et al. | IEEE | 2017