Besides outliers generated from the data collection stage, anomalies in traffic data can also be valid data characterizing unusual traffic activities. Detecting these anomalies in spatiotemporal traffic activities can provide practical insights for traffic monitoring and operation. In this paper, we focus on detecting anomalies in spatiotemporal traffic demand data. We first apply a probabilistic tensor factorization framework to approximate the expected/predicted probability of each trip, and then quantify the degree of anomalous by using the log ratio of observed frequency over the expected probability. In this framework, each trip is considered a sample from an underlying multivariate categorical distribution of time of day, origin zone, destination zone, and day of week. We approximate this distribution using a probabilistic Tucker decomposition model and introduce an efficient expectation maximization (EM) algorithm for model inference. To test this framework, we design and implement two synthetic experiments in the traffic simulation software SUMO. The results show that the proposed framework can effectively detect anomalous activities in multivariate spatiotemporal traffic demand data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Probabilistic Tensor Factorization Approach to Detect Anomalies in Spatiotemporal Traffic Activities


    Beteiligte:
    Wang, Xudong (Autor:in) / Fagette, Antoine (Autor:in) / Sartelet, Pascal (Autor:in) / Sun, Lijun (Autor:in)


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    1113642 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation

    Ben Said, Ahmed / Erradi, Abdelkarim | IEEE | 2022


    Bayesian Kernelized Matrix Factorization for Spatiotemporal Traffic Data Imputation and Kriging

    Lei, Mengying / Labbe, Aurelie / Wu, Yuankai et al. | IEEE | 2022


    A Methodology to Detect Traffic Data Anomalies in Automated Traffic Signal Performance Measures

    Bangyu Wang / Grant G. Schultz / Gregory S. Macfarlane et al. | DOAJ | 2023

    Freier Zugriff