Since the rise of deep artificial neuronal nets, object detection and classification became an autonomous procedure, where both, feature extraction and feature processing (e.g.: classification) is done using an architecture based on artificial neurons. The shortcomings of deep neuronal nets are mainly based the black box models and the architecture of the networks, which cannot be estimated. Unknown behavior and over-fitting is still an unsolved problem. Thus, human-made parameters like the number of neurons or the definition of activation functions must be set. This work presents a non-parametric and non-linear approach for image processing using latent variable models. We used Gaussian process latent variable models for street sign feature extraction, where a latent representation is estimated without prior knowledge such as class label. Based on the latent representation, we visualizes the features and use state-of-the-art classifier for street sign classification. Our results proves, that our approach extracts useful features for classification. Our approach has still shortcomings, such as computational time, which are current areas of research.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Classification of Streetsigns Using Gaussian Process Latent Variable Models


    Beteiligte:


    Erscheinungsdatum :

    01.11.2019


    Format / Umfang :

    243431 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Learning GP-BayesFilters via Gaussian process latent variable models

    Ko, J. | British Library Online Contents | 2011


    Sample-efficient robot motion learning using Gaussian process latent variable models

    Delgado-Guerrero, Juan Antonio / Colomé, Adrià / Torras, Carme | BASE | 2020

    Freier Zugriff

    Gaze-estimation for consumer-grade cameras using a Gaussian process latent variable model

    Wojke, N. / Hedrich, J. / Droege, D. et al. | British Library Online Contents | 2016


    Contextual policy search for micro-data robot motion learning through covariate Gaussian process latent variable models

    Delgado-Guerrero, Juan Antonio / Colomé, Adrià / Torras, Carme | BASE | 2020

    Freier Zugriff

    Unsupervised learning in radiology using novel latent variable models

    Carrivick, L. / Prabhu, S. / Goddard, P. et al. | IEEE | 2005