We present a novel approach for temporally aligning N unsynchronized sequences of a dynamic 3D scene, captured from distinct viewpoints. Unlike existing methods, which work for N = 2 and rely on a computationally-intensive search in the space of temporal alignments, we reduce the problem for general N to the robust estimation of a single line in RN. This line captures all temporal relations between the sequences and can be computed without any prior knowledge of these relations. Experimental results show that our method can accurately align sequences even when they have large mis-alignments (e.g., hundreds of frames), when the problem is seemingly ambiguous (e.g., scenes with roughly periodic motion), and when accurate manual alignment is difficult (e.g., due to slow-moving objects).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Linear sequence-to-sequence alignment


    Beteiligte:
    Carceroni, R.L. (Autor:in) / Padua, F.L.C. (Autor:in) / Santos, G.A.M.R. (Autor:in) / Kutulakos, K.N. (Autor:in)


    Erscheinungsdatum :

    01.01.2004


    Format / Umfang :

    3333472 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Linear Sequence-to-Sequence Alignment

    Carceroni, R. / Padua, F. / Santos, G. et al. | British Library Conference Proceedings | 2004


    Continuous Action Recognition Based on Sequence Alignment

    Kulkarni, K. / Evangelidis, G. / Cech, J. et al. | British Library Online Contents | 2015


    FPGA Implementation of DNA Sequence Alignment with Traceback

    Sarkar, Ardhendu / Banerjee, Som | IEEE | 2020



    Analysis of Travel Behavior Using Sequence Alignment Methods

    Wilson, Clarke | Transportation Research Record | 1998