The methods of recognizing blurry and smudgy navigation path are studied by using fuzzy neural network for JLUIV-2 vision navigation intelligent vehicle. Two fuzzy neural network models are developed, one model has 5 layers, and uses normal distribution probability function as its fuzzy function, another model has 6 layers, and uses /spl pi/ function as its fuzzy function. The dynamic BP algorithm is used to train the two fuzzy neural networks. Experiments of the path recognizing and practical autonomous navigation are done by using JLUIV-2 intelligent vehicle. The results show that the two fuzzy neural networks can effectively recognize the blurry and smudgy navigation path.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Study on blurry and smudgy path recognition by fuzzy neural network


    Beteiligte:
    Rongben Wang, (Autor:in) / Shouwen Ji, (Autor:in) / Zhizhong Wang, (Autor:in) / Keyou Guo, (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    409892 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Study on Blurry and Smudgy Path Recognition by Fuzzy Neural Network

    Wang, R. / Ji, S. / Wang, Z. et al. | British Library Conference Proceedings | 2003


    On high-speed rail´s beaten and blurry path

    Cotey, Angela | IuD Bahn | 2011


    Reclaiming Blurry Data

    G. Vigil / A. Winebarger | NTIS | 2019


    Reclaiming Blurry Data

    Vigil, Genevieve / Winebarger, Amy | NTRS | 2019


    Robustness of noisy and blurry images segmentation

    Gribkov, I. V. / Koltsov, P. P. / Kotovich, N. V. et al. | British Library Online Contents | 2009