A novel semi-blind defocused image deconvolution technique is proposed, which is based on RBF neural network and iterative Wiener filtering. In this technique, firstly a RBF neural network is trained in wavelet domain to estimate defocus parameter. After obtaining the point spread function (PSF) parameter, iterative Wiener filter is adopted to complete the restoration. We experimentally illustrate its performance on simulated data. Results show that the proposed PSF parameter estimation technique is effective and has high performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Defocused Image Restoration Using RBF Network and Iterative Wiener Filter in Wavelet Domain


    Beteiligte:
    Su, Li-yun (Autor:in) / Li, Feng-lan (Autor:in) / Xu, Feng (Autor:in) / Liu, Yu-ran (Autor:in)


    Erscheinungsdatum :

    01.05.2008


    Format / Umfang :

    305735 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Image restoration and object distance evaluation from a defocused photon image [4416-96]

    Ono, S. / Komatsu, S. / Optical Society of Japan et al. | British Library Conference Proceedings | 2001


    A Two-Stage Method for the Restoration of Defocused Images

    Gruzman, I. S. | British Library Online Contents | 1996


    The Wiener filter and regularization methods for image restoration problems

    Murli, A. / D'Amore, L. / De Simone, V. | IEEE | 1999


    The Wiener Filter and Regularization Methods for Image Restoration Problems

    D'Amore, L. / De Simone, V. / Murli, A. et al. | British Library Conference Proceedings | 1999


    A Wiener Filter Improvement Combining Wavelet Domains

    Bruni, V. / Vitulano, D. / IEEE | British Library Conference Proceedings | 2003