This paper presents a quantitative evaluation of the application of the perceptual grouping method known as tensor voting to grey-level images. For that purpose, we have introduced the use of local orientation tensors computed from a set of Gabor filters. While inputs formerly consisted of binary images or sparse edgel maps, we use oriented input tokens and the locations of junctions from images as input to the perceptual grouping. Here, we introduce a benchmark test to estimate the precision of our method with regards to angular and positional error. Results on these test images show that the computation of the tensorial input tokens is highly precise and robust against noise. Both aspects arc further improved by the subsequent grouping process.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Application of the tensor voting technique for perceptual grouping to grey-level images: quantitative evaluation


    Beteiligte:
    Massad, A. (Autor:in) / Babos, M. (Autor:in) / Mertsching, B. (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    386878 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Application of the Tensor Voting Technique for Perceptual Grouping to Grey-Level Images: Quantitative Evaluation

    Massad, A. / Babos, M. / Mertsching, B. et al. | British Library Conference Proceedings | 2003


    An iterative multi-scale tensor voting scheme for perceptual grouping of natural shapes in cluttered backgrounds

    Loss, L. / Bebis, G. / Nicolescu, M. et al. | British Library Online Contents | 2009



    Complexity, Confusion, and Perceptual Grouping

    Dubuc, B. / Zucker, S. W. / University of Naples et al. | British Library Conference Proceedings | 1997


    Perceptual Grouping for Generic Recognition

    Havaldar, P. / Medioni, G. / Stein, F. | British Library Online Contents | 1996