Vehicular edge computing (VEC) tackles the escalating computational demands of intelligent transportation systems by offloading tasks to nearby roadside units (RSUs) for processing. However, in the dynamic vehicular network environment, where vehicles are constantly moving, effective VEC demands a sophisticated approach to managing computing, caching, and communication resources. This involves coordinating resource allocation and data caching across multiple vehicles and RSUs while making complex decisions about task placement. In this paper, we present VECO, a Vehicular Edge Caching and Offloading framework powered by digital twins (DTs). VECO leverages DTs for real-time monitoring of network conditions and resource states, enabling predictive analysis and intelligent decision-making. The framework incorporates a Dynamic Task Caching and Computation Offloading (DT2C) mechanism to optimize data caching and adapt task offloading based on task characteristics and dynamic resource availability. Specifically, we develop a utility-based caching algorithm for RSUs and a novel task offloading strategy using a Proximal Policy Optimization-based deep reinforcement learning algorithm. Extensive experiments demonstrate that VECO, augmented by the DT2C mechanism, significantly outperforms baseline approaches, achieving faster learning convergence and a 21% reduction in total costs, including system latency and energy consumption.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    VECO: A Digital Twin-Empowered Framework for Efficient Vehicular Edge Caching and Computation Offloading


    Beteiligte:
    Lin, Li (Autor:in) / Chen, Weijie (Autor:in) / He, Qiang (Autor:in) / Xiong, Jinbo (Autor:in) / Lin, Jiayin (Autor:in) / Lin, Limei (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.07.2025


    Format / Umfang :

    1839463 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Computation Offloading and Service Caching for Intelligent Transportation Systems With Digital Twin

    Xu, Xiaolong / Liu, Zhongjian / Bilal, Muhammad et al. | IEEE | 2022


    Edge Computation Offloading With Content Caching in 6G-Enabled IoV

    Zhou, Xuanhong / Bilal, Muhammad / Dou, Ruihan et al. | IEEE | 2024


    Cooperative Computation Offloading in Blockchain-Based Vehicular Edge Computing Networks

    Lang, Ping / Tian, Daxin / Duan, Xuting et al. | IEEE | 2022


    Scalable Modulation based Computation Offloading in Vehicular Edge Computing System

    Li, Wenjie / Zhang, Ning / Liu, Qiuyan et al. | IEEE | 2020