This paper explores the capability of deep neural networks to capture key characteristics of vehicle dynamics, and their ability to perform coupled longitudinal and lateral control of a vehicle. To this extent, two different artificial neural networks are trained to compute vehicle controls corresponding to a reference trajectory, using a dataset based on high-fidelity simulations of vehicle dynamics. In this study, control inputs are chosen as the steering angle of the front wheels, and the applied torque on each wheel. The performance of both models, namely a Multi-Layer Perceptron (MLP) and a Convolutional Neural Network (CNN), is evaluated based on their ability to drive the vehicle on a challenging test track, shifting between long straight lines and tight curves. A comparison to conventional decoupled controllers on the same track is also provided.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Coupled Longitudinal and Lateral Control of a Vehicle using Deep Learning


    Beteiligte:


    Erscheinungsdatum :

    01.11.2018


    Format / Umfang :

    674322 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    REINFORCEMENT LEARNING ALGORITHM-BASED PREDICTIVE CONTROL METHOD FOR LATERAL AND LONGITUDINAL COUPLED VEHICLE FORMATION

    YU SHUYOU / LI YUNYONG / FENG YANGYANG et al. | Europäisches Patentamt | 2024

    Freier Zugriff



    Lateral and Longitudinal Control of a Vehicle Convoy

    Fritz, A. | British Library Conference Proceedings | 2001


    Lateral and longitudinal control of a vehicle convoy

    Fritz,A. / Univ.Stuttgart,DE | Kraftfahrwesen | 2001