Accurate and timely cancer diagnosis is crucial for effective treatment and patient survival. This research investigates the application of machine learning algorithms, specifically Support Vector Machines (SVM) and Artificial Neural Networks (ANN), to improve cancer diagnosis. The study utilizes a dataset containing both malignant and benign tumor samples to train and evaluate the proposed models. The performance of the models is assessed using metrics such as accuracy, sensitivity, specificity, and AUC. The results demonstrate that SVM outperforms ANN in classifying cancer types, achieving a higher accuracy of $\mathbf{9 8. 0 8 \%}$ compared to $\mathbf{8 9 \%}$ for ANN. This research highlights the potential of machine learning in enhancing cancer diagnosis and improving patient outcomes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Comprehensive Analysis of Ovarian cancer utilizing SVMs and Artificial Neural Networks


    Beteiligte:
    Gomathi, S. (Autor:in) / Bala Maheswari, K. (Autor:in)


    Erscheinungsdatum :

    06.11.2024


    Format / Umfang :

    554110 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Space Vision Marker System (SVMS)

    Bondy, Michel / Krishnasamy, Rubakumar / Crymble, Derry et al. | AIAA | 2007


    Utilizing Artificial Neural Networks for Entry Vehicle Aerodynamic Characterization

    Ernst, Zachary J. / Robertson, Bradford E. / Mavris, Dimitri | AIAA | 2024


    A Complementary SVMS-Based Image Annotation System

    Han, Y. / Qi, X. | British Library Conference Proceedings | 2005


    Learning Interpretable SVMs for Biological Sequence Classification

    Sonnenburg, S. / Ratsch, G. / Schafer, C. | British Library Conference Proceedings | 2005


    Space Vision Marker System (SVMS) AIAA Paper

    Bondy, M. / Krishnasamy, R. / Crymble, D. et al. | British Library Conference Proceedings | 2007