Channel congestion Is one of the most critical Issues In IEEE 802.11p-based vehicular ad hoc networks as it leads to unreliability of safety applications. As a counter measure, the European Telecommunications Standard Institute (ETSI), proposes a mandatory Decentralized Congestion Control (DCC) framework to control the channel load, by tuning transmission parameters, such as message-rate or data-rate. This paper defines a novel decentralized combined message-rate and data-rate congestion control (MD-DCC) scheme, which provides a fair and effective way of message-rate and data-rate allocation among vehicles to avoid congestion and satisfy application requirements. We discuss several implementation aspects such as the selection of parameters of MD-DCC and their relation with the application requirements. Simulations studies are presented to show the performance of MD-DCC in terms of application reliability and fairness. Our results show that, for various application requirements in a synthetic highway scenario and for various vehicular densities, MD-DCC outperforms other approaches that adapt only message-rate or data-rate. We conclude that MD-DCC takes the best of both message-rate and data-rate algorithms, resulting in superior application reliability as well as a dramatic increase in the maximum supported vehicular density.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A combined fair decentralized message-rate and data-rate congestion control for V2V communication


    Beteiligte:


    Erscheinungsdatum :

    2017-11-01


    Format / Umfang :

    233740 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Coexistence of Decentralized Congestion Control Algorithms for V2V Communication

    Math, Chetan Belagal / Li, Hong / Abanto-Leon, Luis F. et al. | IEEE | 2018


    Decentralized Congestion Control Techniques for VANETs

    Smely, Dieter / Rührup, Stefan / Schmidt, Robert K. et al. | Springer Verlag | 2015