The importance of shape recognition is increasing rapidly in the field of computer graphics and multimedia communication because it is difficult to process information efficiently without its recognition. In this paper, we present a 3D object recognition approach based on a global geodesic measure. The key idea behind our methodology is to represent an object by a probabilistic shape descriptor that measures the global geodesic distance between two arbitrary points on the surface of an object. The geodesic distance has the advantage to be able to capture the intrinsic geometric structure of the data. Object matching can then be carried out by an information-theoretic dissimilarity measure calculations between geodesic shape distributions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Probabilistic shape descriptor for triangulated surfaces


    Beteiligte:
    Hamza, A.B. (Autor:in) / Krim, H. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    740428 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Probabilistic Shape Descriptor for Triangulated Surfaces

    Hamza, A. B. / Krim, H. | British Library Conference Proceedings | 2005


    Multiresolution Representation and Reconstruction of Triangulated Surfaces

    De Floriani, L. / Magillo, P. / Puppo, E. et al. | British Library Conference Proceedings | 1997


    Estimation of Differential Structures on Triangulated Surfaces

    Krsek, P. / Pajdla, T. / Hlavac, V. et al. | British Library Conference Proceedings | 1997



    Shape Classifer Based on Generalized Probabilistic Descent Method with Hidden Markov Descriptor

    Thakoor, N. / Gao, J. / IEEE | British Library Conference Proceedings | 2005