This article examines probabilistic trajectory forecasting methods of vulnerable road users (VRU) for the motion planning of autonomous vehicles. The future trajectories of a cyclist are predicted by Quantile Surface Neural Networks (QSN) and Mixture Density Neural Networks (MDN), both modeling confidence regions around the cyclist’s expected locations. Confidence regions are approximated by different methods with varying degrees of complexity to bridge the gap between forecasting and planning. Model-Predictive Planning (MPP) based on these regions is used for the autonomous vehicle. The approach is evaluated using a case study regarding safe trajectory planning for overtaking cyclists. The experiments show the effectiveness of the approach. Different considerations on the use of combined probabilistic trajectory prediction and vehicle trajectory planning are included.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Probabilistic VRU Trajectory Forecasting for Model-Predictive Planning A Case Study: Overtaking Cyclists


    Beteiligte:
    Schneegans, Jan (Autor:in) / Eilbrecht, Jan (Autor:in) / Zernetsch, Stefan (Autor:in) / Bieshaar, Maarten (Autor:in) / Doll, Konrad (Autor:in) / Stursberg, Olaf (Autor:in) / Sick, Bernhard (Autor:in)


    Erscheinungsdatum :

    11.07.2021


    Format / Umfang :

    1689733 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Dangerous Overtaking of Cyclists in Montréal

    Andres Henao / Philippe Apparicio | DOAJ | 2022

    Freier Zugriff

    Note on Motorist Behaviors When Overtaking Cyclists

    Lindsey, Greg / Hourdos, John / Duhn, Melissa et al. | ASCE | 2020


    Overtaking on rural roads – Cyclists' and motorists' perspectives

    Katja Kircher / Magdalena Lindman | DOAJ | 2024

    Freier Zugriff


    Trajectory Planning for Automated Vehicles in Overtaking Scenarios

    Graf, Maximilian / Speidel, Oliver / Dietmayer, Klaus | IEEE | 2019