Collision avoidance is a crucial task in vision-guided autonomous navigation. Traditional solutions tend to be computationally expensive and difficult to adapt to new environments. In this work, we propose a novel collision avoidance solution for autonomous drones. Formulated under a deep reinforcement learning framework, our model relies on a pair of margin reward functions to ensure the drones fly smoothly while greatly reducing the chance of collision. Additional reward functions are designed to attract the drones to fly towards their destinations, as well as to follow predefined routes. Experiments using indoor simulation environments demonstrate the effectiveness of our overall design and the individual components.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vision-guided Collision Avoidance Through Deep Reinforcement Learning


    Beteiligte:
    Song, Sirui (Autor:in) / Zhang, Yuanhang (Autor:in) / Qin, Xi (Autor:in) / Saunders, Kirk (Autor:in) / Liu, Jundong (Autor:in)


    Erscheinungsdatum :

    16.08.2021


    Format / Umfang :

    20107593 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Pedestrian Collision Avoidance Using Deep Reinforcement Learning

    Rafiei, Alireza / Fasakhodi, Amirhossein Oliaei / Hajati, Farshid | Springer Verlag | 2022


    Vision-based Distributed Multi-UAV Collision Avoidance via Deep Reinforcement Learning for Navigation

    Huang, Huaxing / Zhu, Guijie / Fan, Zhun et al. | ArXiv | 2022

    Freier Zugriff



    Towards monocular vision based obstacle avoidance through deep reinforcement learning

    Xie, L / Wang, S / Markham, A et al. | BASE | 2020

    Freier Zugriff