Describes a method to improve the cumulative recognition rates of pattern recognition using a decision directed acyclic graph (DDAG) based on support vector machines (SVM). Though the original DDAG has high level of performance and its execution speed is fast, it does not consider the so-called cumulative recognition rate. We construct a DDAG which can incorporate the cumulative recognition rate. As a result of our experiment for handprinted Hiragana characters in JEITA-HP, the cumulative recognition rate is improved and its execution time is almost the same as the original DDAG and 30 times faster than the Max Win Algorithm which is one of the famous recognition methods using support vector machines for a multi-class problem.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Handprinted Hiragana recognition using support vector machines


    Beteiligte:
    Maruyama, K.-I. (Autor:in) / Maruyama, M. (Autor:in) / Miyao, H. (Autor:in) / Nakano, Y. (Autor:in)


    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    317682 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Handprinted Hiragana Recognition Using Support Vector Machines

    Maruyama, K. / Maruyama, M. / Miyao, H. et al. | British Library Conference Proceedings | 2002


    A Demonstration of Handprinted Symbol Recognition

    Parker, J. / Pivovarov, J. / IEEE | British Library Conference Proceedings | 2001


    A demonstration of handprinted symbol recognition

    Parker, J.R. / Pivovarov, J. | IEEE | 2001


    Recognition of handprinted Chinese characters using Gabor features

    Hamamoto, Y. / Uchimura, S. / Masamizu, K. et al. | IEEE | 1995


    Handprinted word recognition on a NIST data set

    Gader, P. / Whalen, M. / Ganzberger, M. et al. | British Library Online Contents | 1995