This paper establishes a duality between the calculus of variations, an increasingly common method for trajectory planning, and Hidden Markov Models (HMMs), a common probabilistic graphical model with applications in artificial intelligence and machine learning. This duality allows findings from each field to be applied to the other, namely providing an efficient and robust global optimization tool and machine learning algorithms for variational problems, and fast local solution methods for large state-space HMMs.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Correspondence between variational methods and Hidden Markov Models


    Beteiligte:
    Ziehn, J. (Autor:in) / Ruf, M. (Autor:in) / Rosenhahn, B. (Autor:in) / Willersinn, D. (Autor:in) / Beyerer, J. (Autor:in) / Gotzig, H. (Autor:in)


    Erscheinungsdatum :

    01.06.2015


    Format / Umfang :

    244913 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Hidden Markov Models... In 10 Minutes

    Thompson, David R. | NTRS | 2012



    Crash Detection System Using Hidden Markov Models

    Chou, Clifford C. / Singh, Gautam B. / Song, Haiping | SAE Technical Papers | 2004


    Multiuser detection based on hidden Markov models

    Feng, L. / Taiyi, Z. / Jinyan, H. | British Library Online Contents | 2003


    Crash Detection System Using Hidden Markov Models

    Singh, G. B. / Song, H. / Chou, C. C. et al. | British Library Conference Proceedings | 2004