The nearest neighbor rule has previously been shown to be the most reliable method for segmentation of at least a certain range of magnetic resonance images compared with other supervised learning techniques. A nearest neighbor classifier may require long computing time and large memory space if the number of prototypes used is large. The authors present a method for image segmentation using optimized nearest neighbor classifiers. In the method only a very small number of prototypes are generated from training samples using an unsupervised learning method. The prototypes are then optimized using a neural network based on supervised learning. The optimized nearest neighbor classifier is robust in performance for image segmentation and very efficient for practical implementation.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Magnetic resonance image segmentation using optimized nearest neighbor classifiers


    Beteiligte:
    Hong Yan (Autor:in) / Jingtong Mao (Autor:in) / Yan Zhu (Autor:in) / Chen, B. (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    376416 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Magnetic Resonance Image Segmentation Using Optimized Nearest Neighbor Classifiers

    Yan, H. / Mao, J. / Zhu, Y. et al. | British Library Conference Proceedings | 1994



    A Comparison of Multi-layer Neural Networks and Optimized Nearest Neighbor Classifiers for Handwritten Digit Recognition

    Yan, H. / IEEE; Hong Kong Chapter of Signal Processing | British Library Conference Proceedings | 1994



    3DNN: 3D Nearest Neighbor

    Satkin, S. / Rashid, M. / Lin, J. et al. | British Library Online Contents | 2015