Automatic modulation classification (AMC) is the problem of identifying the modulation type of a given radio frequency (RF) signal. This operation is one of the key steps in a cognitive radio based spectrum sharing communication network. It is known that the optimal classification algorithms for AMC are computationally intensive which renders real-time implementation almost impossible. In this paper, we propose a practical AMC algorithm that employs multiple stages of clustering to identify the modulation type of the received RF signal. Here, we consider the communication signals to be modulated using the most common digital modulation types: phase shift keying (PSK) or quadrature amplitude modulation (QAM). First, we present a novel algorithm that performs multiple stages of clustering to identify the clusters present in the received data and classifies it to one of the several possible modulation types. Second, we validate our proposed algorithm through practical implementation using software defined radios (SDR). Our results show that the proposed multistage clustering based AMC algorithm works well in practical conditions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multistage Clustering Based Automatic Modulation Classification


    Beteiligte:


    Erscheinungsdatum :

    01.04.2019


    Format / Umfang :

    1743499 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multistage decoding algorithm of block coding modulation

    Jie, R. / Jungang, M. / Huisheng, Z. et al. | British Library Online Contents | 2014


    Graphic Constellations and DBN Based Automatic Modulation Classification

    Wang, Fen / Wang, Yongchao / Chen, Xi | IEEE | 2017


    Neural Network Based Automatic Modulation Classification with Online Training

    Zhang, Shuo / Yakopcic, Chris / Taha, Tarek M. | IEEE | 2023


    Depth Analysis in Deep Learning-Based Automatic Modulation Classification

    Osman Kaya / Tansal Güçlüoğlu / Hacı İlhan | DOAJ | 2024

    Freier Zugriff

    Low Complexity Automatic Modulation Classification Based on Order Statistics

    Han, Lubing / Xue, Haozhou / Gao, Feifei et al. | IEEE | 2016