Automatically detecting cracks with uneven strength from a complex background is a valuable and challenging issue. In light of the lost details and the incomplete extracted cracks in the process of crack extraction, we propose a network model with hierarchical feature fusion and connected attention architecture. Firstly, we build the backbone network on the improved DCA-SE-ResNet-50. Then, we propose a method for crack feature fusion, which combines depthwise separable convolution and dilated convolution to recover more crack details. Finally, we design the attention layer which integrates feature map2 with feature map4. The side network incorporates the feature maps of the low convolutional layer and the high convolutional layer at multiple levels to assist in obtaining the final prediction map. Sufficient experimental results demonstrate that our method achieved state-of-the-art performances, best F-score over 0.86, 12 FPS. Besides the effectiveness of our proposed method is verified on CFD, Crack500, and DCD datasets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Method of Hierarchical Feature Fusion and Connected Attention Architecture for Pavement Crack Detection


    Beteiligte:
    Qu, Zhong (Autor:in) / Wang, Cai-Yun (Autor:in) / Wang, Shi-Yan (Autor:in) / Ju, Fang-Rong (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.09.2022


    Format / Umfang :

    3070467 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Improved Asphalt Pavement Crack Detection Model Based on Shuffle Attention and Feature Fusion

    Tursun Mamat / Abdukeram Dolkun / Runchang He et al. | DOAJ | 2025

    Freier Zugriff

    Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection

    Yang, Fan / Zhang, Lei / Yu, Sijia et al. | IEEE | 2020