Public vehicle (PV) systems are promising transportation systems for future smart cities which provide dynamic ride-sharing services according to passengers’ requests. PVs are driverless/self-driving electric vehicles which require frequent recharging from smart grids. For such systems, the challenge lies in both the efficient scheduling scheme to satisfy transportation demands with service guarantee and the cost-effective charging strategy under the real-time electricity pricing. In this paper, we study the joint transportation and charging scheduling for PV systems to balance the transportation and charging demands, ensuring the long-term operation. We adopt a cake cutting game model to capture the interactions among PV groups, the cloud and smart grids. The cloud announces strategies to coordinate the allocation of transportation and energy resources among PV groups. All the PV groups try to maximize their joint transportation and charging utilities. We propose an algorithm to obtain the unique normalized Nash equilibrium point for this problem. Simulations are performed to confirm the effects of our scheme under the real taxi and power grid data sets of New York City. Our results show that our scheme achieves almost the same transportation performance compared with a heuristic scheme, namely, transportation with greedy charging; however, the average energy price of the proposed scheme is 10.86% lower than the latter one.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Joint Transportation and Charging Scheduling in Public Vehicle Systems—A Game Theoretic Approach


    Beteiligte:
    Zhu, Ming (Autor:in) / Liu, Xiao-Yang (Autor:in) / Wang, Xiaodong (Autor:in)


    Erscheinungsdatum :

    2018-08-01


    Format / Umfang :

    2469355 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Game-Theoretic Approach for Dynamic Service Scheduling at Charging Facilities

    Hajibabai, Leila / Mirheli, Amir | IEEE | 2022

    Freier Zugriff


    A Game-Theoretic Approach for Regulating Hazmat Transportation

    Bianco, Lucio / Caramia, Massimiliano / Giordani, Stefano et al. | British Library Online Contents | 2016


    A game-theoretic approach for reliability evaluation of public transportation transfers with stochastic features

    Giorgio Gnecco / Yuval Hadas / Marcello Sanguineti | DOAJ | 2022

    Freier Zugriff

    Developing public transportation resilience against the epidemic through government tax policies: A game-theoretic approach

    Gorji, Mohammad-Ali / Shetab-Boushehri, Seyyed-Nader / Akbarzadeh, Meisam | Elsevier | 2022