This paper investigates the feasibility of classifying winter road surface conditions using images from low cost cameras mounted on regular vehicles. RGB features along with gradients have been used as feature vectors. A Support Vector Machine (SVM) is trained using the extracted features and then used to classify the images into their respective categories. Different training schemes and their effect on the classification rate are also discussed along with the possibility of developing an automated winter road surface classification system in future.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An automatic image recognition system for winter road surface condition classification


    Beteiligte:
    Omer, Raqib (Autor:in) / Liping Fu, (Autor:in)


    Erscheinungsdatum :

    01.09.2010


    Format / Umfang :

    491417 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Winter Road Condition Recognition Using Video Image Classification

    Kuehnle, Andreas / Burghout, Wilco | Transportation Research Record | 1998



    Image-Based Winter Road Condition Recognition

    Kuehnle, A. / Burghout, W. / American Society of Civil Engineers | British Library Conference Proceedings | 1998


    Winter Road Surface Condition Monitoring

    Linton, Michael A. / Fu, Liping | Transportation Research Record | 2015


    ROAD SURFACE CONDITION INFORMATION SYSTEM FOR THE WINTER SEASON

    Motoda, Y. / ITS Congress Association | British Library Conference Proceedings | 2000