In a context of air transportation growth, it becomes essential to better manage the rising congestion levels. The present paper presents a large-scale destination-aggregated multicommodity flow model at the National Airspace system level, supported by a data-based network synthesis. It encomprises a departure queuing model to optimize the routing and delays of flights in the NAS. The flows are aggregated according to their destination to ensure a more compact linear optimization formulation without losing accuracy in the analysis. This model determines the nationwide impact of local constraints from historical data. It could serve as the basis to understand the propagation of congestion in the NAS, mitigate its effects by linking optimization results to operational constraints and actions, and support nationwide collaborative management of the airspace resources.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Large-scale data-based collaborative air traffic optimization for congestion management


    Beteiligte:
    Marzuoli, Aude (Autor:in) / Boidot, Emmanuel (Autor:in) / Feron, Eric (Autor:in)


    Erscheinungsdatum :

    01.10.2013


    Format / Umfang :

    662204 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Multi-Objective Collaborative Optimization Approach for Large- Scale Air Traffic Management

    DU WENBO / GUO TONG / ZHAO YONG et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Large-Scale Street Geometry and Traffic Congestion

    National Research Council (U.S.) | British Library Conference Proceedings | 2005


    Traffic Congestion Management

    Mohanraj, K. Y. / Santhameena, S. / Deshi, Mahendra et al. | Springer Verlag | 2025


    Traffic Congestion Management

    Rouphail, Nagui M. | Wiley | 2008