In order to improve operation efficiency and customer satisfaction and to minimize the turnaround time of vessels at container terminals, a berth allocation problem (BAP) was formulated. An adaptive artificial fish swarm algorithm (AFSA) was proposed to solve it. Firstly, the basic principle and the algorithm design of the AFSA were introduced. Then, for a test case, computational experiments explored the effect of algorithm parameters on the convergence of the algorithm. Experimental results show that the algorithm has better convergence performance than genetic algorithm (GA) and ant colony optimization (ACO). The improved algorithm with rational parameters can effectively solve the BAP.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimizing Berth Allocation by an Artificial Fish Swarm Algorithm


    Beteiligte:
    Yun Cai, (Autor:in) / Yongzhong Huo, (Autor:in) / Meng Yu, (Autor:in)


    Erscheinungsdatum :

    01.11.2010


    Format / Umfang :

    235283 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Optimizing Multi-Quay Berth Allocation using the Cuckoo Search Algorithm

    Aslam, Sheraz / Michaelides, Michalis P. / Herodotou, Herodotos | TIBKAT | 2022

    Freier Zugriff


    Simulated Annealing Algorithm for Berth Allocation Problems

    Line, Shih-Wei / Ting, Ching-Jung | Springer Verlag | 2013