In this work, optimal firing angles of Switched Reluctance Motors (SRMs) are explored by surrogatebased optimization in order to minimize the torque ripple. Surrogate-based optimization is facilitated via Neural Networks (NNs) which are regression tools capable of learning complex multi-variate functions. Flux and torque calculations of a nonlinear 16/20 SRM are evaluated with a NN, and consequently the computation time is expedited by replacing the look-up tables of flux and torque with the surrogate NN model. An optimization algorithm is proposed to discover optimal firing angle objects to minimize the 16/20 SRM torque ripple for a certain electrical load requirement. The resulting optimal firing angles are also represented by simple NN models to expedite online control. Comprehensive simulation and experimental results are provided to validate the theoretical findings.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Surrogate-Based Optimization of Firing Angles for Switched Reluctance Motor


    Beteiligte:
    Anvari, Bahareh (Autor:in) / Kaya, Mine (Autor:in) / Englebretson, Steven (Autor:in) / Hajimirza, Shima (Autor:in) / Toliyat, Hamid A. (Autor:in)


    Erscheinungsdatum :

    01.06.2018


    Format / Umfang :

    338217 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Optimal commutation angles of a switched reluctance motor/generator

    Zaharia, M.V. / Laczko, Andreea Adriana / Pop, A.A. et al. | IEEE | 2015


    SWITCHED RELUCTANCE MOTOR CONTROL

    TANG LIXIN / NIU GENG | Europäisches Patentamt | 2023

    Freier Zugriff

    Switched reluctance motor control

    TANG LIXIN / NIU GENG | Europäisches Patentamt | 2021

    Freier Zugriff

    Switched Reluctance Motor Drives

    Chau, K. T. | Wiley | 2015