Crack detection plays a crucial role in structural health monitoring tasks to ensure the reliability of the transportation infrastructures. However, the automatic detection of cracks remains a challenging task due to the complicated background. Especially, tiny crack detection should be attached importance because of its weak feature and background interference. Therefore, an end-to-end network Feature Fusion Encoder Decoder Network (FFEDN) with two novel modules is proposed to improve the crack detection accuracy. For one thing, the representation capability for tiny cracks is enhanced by introducing the attention mechanism, which redistributes and fuses different features of both the encoder and the decoder. For another, because high-level feature contains less interference, a shape semantic prior module is developed to learn the shape prior map that provides the rough shape and location information of cracks. This map is fed into the lower-level feature and helps it focus on crack areas, thereby suppressing background interference. To demonstrate the effectiveness of the proposed network, several experiments are implemented on three publicly available crack datasets. Compared with state-of-the-art crack detection methods, the novel network shows better performance on all the six evaluation metrics.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    FFEDN: Feature Fusion Encoder Decoder Network for Crack Detection


    Beteiligte:
    Liu, Chuanqi (Autor:in) / Zhu, Chengguang (Autor:in) / Xia, Xuan (Autor:in) / Zhao, Jiankang (Autor:in) / Long, Haihui (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.09.2022


    Format / Umfang :

    3414445 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    UNSUPERVISED ENCODER-DECODER NEURAL NETWORK SECURITY EVENT DETECTION

    KORAL YARON / ZHANG RENSHENG WANG / NOEL ERIC et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    UNSUPERVISED ENCODER-DECODER NEURAL NETWORK SECURITY EVENT DETECTION

    KORAL YARON / ZHANG RENSHENG WANG / NOEL ERIC et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Unsupervised encoder-decoder neural network security event detection

    KORAL YARON / ZHANG RENSHENG WANG / NOEL ERIC et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    CCSDS Decoder/Encoder Boards

    Habinc, S. / Saunders, S. | Springer Verlag | 2022


    The CCSDS Decoder/Encoder Boards

    Habinc, Sandi | Springer Verlag | 2013