An analysis of the influence of missing samples in signals exhibiting sparsity in the Hermite transform domain is presented. Based on the statistical properties derived for the Hermite coefficients of randomly undersampled signal, the probability of success in detection of signal components support is determined and a threshold for the detection of signal components is provided. It is a crucial step in a simple noniterative and iterative matching pursuit (MP)-based algorithm for compressive sensing signal reconstruction.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Compressive Sensing of Sparse Signals in the Hermite Transform Basis


    Beteiligte:
    Brajovic, Milos (Autor:in) / Orovic, Irena (Autor:in) / Dakovic, Milos (Autor:in) / Stankovic, Srdjan (Autor:in)


    Erscheinungsdatum :

    01.04.2018


    Format / Umfang :

    1582084 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Anisotropic Sparse Gauss-Hermite Quadrature Filter

    Jia, Bin / Xin, Ming / Cheng, Yang | AIAA | 2011


    Anisotropic Sparse Gauss-Hermite Quadrature Filter

    Jia, Bin / Xin, Ming / Cheng, Yang | AIAA | 2012



    Anisotropic Sparse Gauss-Hermite Quadrature Filter

    Jia, B. / Xin, M. / Cheng, Y. et al. | British Library Conference Proceedings | 2011