In this paper, we propose a new steady-state visually evoked potential (SSVEP) brain–computer interface (BCI) with visual stimuli presented on a windshield via a head-up display, and we apply this BCI in conjunction with an alpha rhythm to control a simulated vehicle with a 14-DOF vehicle dynamics model. A linear discriminant analysis classifier is applied to detect the alpha rhythm, which is used to control the starting and stopping of the vehicle. The classification models of the SSVEP BCI with three commands (i.e., turning left, turning right, and going forward) are built by using a support vector machine with frequency domain features. A real-time brain-controlled simulated vehicle is developed and tested by using four participants to perform a driving task online, including vehicle starting and stopping, lane keeping, avoiding obstacles, and curve negotiation. Experimental results show the feasibility of using the human “mind” alone to control a vehicle, at least for some users.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Using a Head-up Display-Based Steady-State Visually Evoked Potential Brain–Computer Interface to Control a Simulated Vehicle


    Beteiligte:
    Bi, Luzheng (Autor:in) / Fan, Xin-an (Autor:in) / Jie, Ke (Autor:in) / Teng, Teng (Autor:in) / Ding, Hongsheng (Autor:in) / Liu, Yili (Autor:in)


    Erscheinungsdatum :

    01.06.2014


    Format / Umfang :

    721840 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch