This paper deals with the problem of blind source separation in fMRI data analysis. Our main contribution is to present a maximum likelihood based method to blindly separate the brain activations in an fMRI experiment. Choosing the time frequency domain as the signal representation space, our method relies on the second order statistics and exploits the inter-source diversity. It is efficiently implemented by the EM (expectation-maximization) algorithm where the time courses of the brain activations are considered as the hidden variables. The estimation variance of the STFT (short time Fourier transform) is reduced by averaging across time frequency sub-domains. The successful separation of the right and left visual cortex activations during a visual fMRI experiment, in a block design, and the extraction of only the relevant tasks corroborate the effectiveness of our proposed separating algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Bayesian blind source separation for brain imaging


    Beteiligte:
    Snoussi, H. (Autor:in) / Calhoun, V.D. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    159572 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Bayesian Blind Source Separation for Brain Imaging

    Snoussia, H. / Calhoun, V. D. | British Library Conference Proceedings | 2005


    Convolutive Blind Source Separation for Noisy Mixtures

    Aichner, R. / Buchner, H. / Kellermann, W. | British Library Conference Proceedings | 2004




    Evaluation of Blind Source Separation Methods in Acoustics

    Boustany, R. / Antoni, J. | British Library Conference Proceedings | 2004