This paper presents Fade, a vehicle detection and tracking system featuring monocular color vision and radar data fusion. Its main originality resides in its low-level fusion system. At each step and for each target, the fusion system fuses the results of four different image processing algorithms and radar information by automatically combining 12 different features and generating many possible target position proposals. It generates a belief network organized in three layers: sources, position proposals, and correlation between proposals. An inference algorithm is then used to find out the actual position of the target, by deducing which observations are wrong. The overall system runs in real time and has been evaluated on a variety of scenarios recorded in a real car using /sup RT/Maps. Fade yields very good detection results in most cases.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fade: a vehicle detection and tracking system featuring monocular color vision and radar data fusion


    Beteiligte:
    Steux, B. (Autor:in) / Laurgeau, C. (Autor:in) / Salesse, L. (Autor:in) / Wautier, D. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    421414 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Fade: A Vehicle Detection and Tracking System Featuring Monocular Color Vision and Radar Data Fusion

    Steux, B. / Laurgeau, C. / Salesse, L. et al. | British Library Conference Proceedings | 2003


    Moving vehicle detection and tracking using monocular vision

    Miao,X. / Li,S. / Shen,H. et al. | Kraftfahrwesen | 2014


    Moving vehicle detection and tracking using monocular vision

    Miao, Xiaoding / Li, Shunming / Shen, Huan et al. | Tema Archiv | 2014



    Tracking RGB Color Markers through DLT Calibrated Monocular Vision System

    Shahzad, Adil / Mu, Yu / Gao, Xueshan | British Library Conference Proceedings | 2016