In this paper, we present a novel monocular visual localization system that leverages range information to accurately estimate the global pose of a vehicle in realtime. We address the three key challenges of monocular visual odometry - namely, scale ambiguity, scale drift, and error accumulation - by integrating UWB range measurement. To overcome the UWB non-line-of-sight (NLOS) issue, we design an innovative NLOS identification and culling mechanism that relies on the latest visual relative measurement. Our system is implemented using a factor graph, which incorporates co- visible and adjacent factors to effectively utilize the visual information. We validate the exceptional performance of the proposed localization system by extensively testing it with a large dataset collected in underground parking lots. Additionally, to facilitate further research, we plan to publish this self- collected dataset at https://github.com/fwf-lernen/TJ-UWB-MonoImage-Dataset.gitsoon.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    UWB Range-Assisted Monocular Visual Localization System for Underground Parking Lots


    Beteiligte:
    Fu, Wufei (Autor:in) / Zhuo, Guirong (Autor:in) / Xiong, Lu (Autor:in) / Tang, Xiao (Autor:in) / Jia, Ruoheng (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    3855575 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Visual Map-Based Localization for Intelligent Vehicles Using Around View Monitoring in Underground Parking Lots

    Zhou, Zhe / Hu, Zhaozheng / Xiao, Hanbiao et al. | Transportation Research Record | 2022



    LIGHTINGS INSTALLING IN PARKING SPACES OF UNDERGROUND PARKING LOTS

    O KWANG SIK | Europäisches Patentamt | 2019

    Freier Zugriff

    Vehicle Tracking System in Underground Parking Lots Using Smartphone

    Shin, Beomju / Kim, Taehun / Kyung, Hankyeol et al. | IEEE | 2024


    Multi-View and Multi-Scale Localization for Intelligent Vehicles in Underground Parking Lots

    Huang, Gang / Hu, Zhaozheng / Mu, Mengchao et al. | Transportation Research Record | 2019