Background modeling plays an important role for video surveillance, object tracking, and object counting. In this paper, we propose a novel deep background modeling approach utilizing fully convolutional network. In the network block constructing the deep background model, three atrous convolution branches with different dilate are used to extract spatial information from different neighborhoods of pixels, which breaks the limitation that extracting spatial information of the pixel from fixed pixel neighborhood. Furthermore, we sample multiple frames from original sequential images with increasing interval, in order to capture more temporal information and reduce the computation. Compared with classical background modeling approaches, our approach outperforms the state-of-art approaches both in indoor and outdoor scenes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Background Modeling Using Fully Convolutional Network


    Beteiligte:
    Yang, Lu (Autor:in) / Li, Jing (Autor:in) / Luo, Yuansheng (Autor:in) / Zhao, Yang (Autor:in) / Cheng, Hong (Autor:in) / Li, Jun (Autor:in)


    Erscheinungsdatum :

    01.01.2018


    Format / Umfang :

    2617708 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    On Transfer Learning for a Fully Convolutional Deep Neural SIMO Receiver

    Uyoata, Uyoata E. / Adeogun, Ramoni O. | IEEE | 2024


    Emergency Vehicle Detection Using Deep Convolutional Neural Network

    Haque, Samiul / Sharmin, Shayla / Deb, Kaushik | Springer Verlag | 2022


    Detection of roadside vegetation using Fully Convolutional Networks

    Harbaš, Iva / Prentašić, Pavle / Subašić, Marko | British Library Online Contents | 2018


    Robust Traffic Signs Classification using Deep Convolutional Neural Network

    Kherraki, Amine / Maqbool, Muaz / Ouazzani, Rajae El | IEEE | 2022