The task of recognizing characters and numbers from handwritten images has a wide variety of applications in today's world In this paper, a deep hybrid learning approach using transfer learning to classify numbers from handwritten images of regional language Odia numbers was implemented. The performance across various optimizers on VGG16, and even among various traditional machine learning classifiers, were compared. Each of the networks was trained for 50 epochs, with ReduceLR on plateau as a callback mechanism to make the model learn the parameters better. Augmentation techniques such as image shearing and rescaling to further generalize the model.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Odia Handwritten Numeral Recognition: A Hybrid Modelling Approach


    Beteiligte:


    Erscheinungsdatum :

    02.12.2021


    Format / Umfang :

    1062385 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Script Independent Handwritten Numeral Recognition

    Kunte, R. S. / Sudhaker, S. R. D. / Visual Information Engineering Network (Institution of Engineering and Technology) | British Library Conference Proceedings | 2006


    A Hybrid Multiple Classifier System of Unconstrained Handwritten Numeral Recognition

    He, C. L. / Suen, C. Y. | British Library Online Contents | 2005


    A hybrid multiple classifier system of unconstrained handwritten numeral recognition

    He, C. L. / Suen, C. Y. | British Library Online Contents | 2007



    Approach to subclass division and discrimination for handwritten numeral recognition [4554-48]

    Zhu, X. / Shi, Q. / International Society for Optical Engineering | British Library Conference Proceedings | 2001