The performance of a partial diffusion Kalman filtering (PDKF) algorithm for the networks with noisy links is studied here. A closed-form expression for the steady-state mean square deviation is then derived and theoretically shown that when the links are noisy, the communication–performance tradeoff, reported for the PDKF algorithm, does not hold. Additionally, optimal selection of combination weights is investigated, and a combination rule along with an adaptive implementation is motivated. The results confirm the theoretical outcome.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Performance Analysis of Distributed Kalman Filtering With Partial Diffusion Over Noisy Network


    Beteiligte:
    Vahidpour, Vahid (Autor:in) / Rastegarnia, Amir (Autor:in) / Latifi, Milad (Autor:in) / Khalili, Azam (Autor:in) / Sanei, Saeid (Autor:in)


    Erscheinungsdatum :

    01.06.2020


    Format / Umfang :

    1322711 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Kalman filtering with partial Markovian packet losses

    Wang, B. F. / Guo, G. | British Library Online Contents | 2009


    Partial Diffusion Kalman Filter With Adaptive Combiners

    Khalili, Azam / Vahidpour, Vahid / Rastegarnia, Amir et al. | IEEE | 2021



    Kalman Filtering

    Grewal, Mohinder S. / Weill, Lawrence R. / Andrews, Angus P. | Wiley | 2007