Although rule-based object-based classification can often perform better than the supervised approaches, its attribute selection is very time consuming and hardly transferable between different urban areas. The purpose of this study is to identify transferable rule-sets for different areas from QuickBird satellite imagery for urban areas consisting heterogeneous man-made and natural features. Object-based classification was used in this research, and a mathematical method was proposed for rule transferability for different urban areas.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Development of transferable rule-sets for urban areas using QuickBird satellite imagery


    Beteiligte:


    Erscheinungsdatum :

    01.11.2014


    Format / Umfang :

    507149 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Mapping and Identification of Submerged Plants in a Shallow Lake, Turkey Using Quickbird Satellite Data

    Dogan, O. K. / Akyurek, Z. / Beklioglu, M. et al. | British Library Conference Proceedings | 2006



    Radiometric Characterization Results for the QuickBird Sensor

    Holekamp, Kara / Aaron, David / Thome, Kurtis | NTRS | 2007


    Using ISERV and Commercial Satellite Imagery to Assess and Monitor Recovery Efforts in Urban Damaged Areas

    Bell, Jordan R. / Molthan, Andrew L. / Burks, Jason E. et al. | NTRS | 2015