The paper describes a novel comprehensive approach to image-contrast enhancement in the spatial domain. Instead of defining another transformation function our strategy consists of adopting a general functional form, able to map different transformation functions, and in using a learning technique to select the parameter values that are optimal for the image being processed. First, local measures of spatial activity are assigned to each pixel of the image. Second, the local contrast value for each pixel is computed according to a function which is based on human visual response. Third, the parameters of a comprehensive contrast-enhancement function are selected by a genetic algorithm on the basis of the spatial activity of the image resulting from the transformation. The validity of the proposed technique is confirmed both perceptually, that is, higher fitness values correspond to the images that have been judged better by human observers, and by comparative evaluations of our algorithm with respect to classical methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A comprehensive approach to image-contrast enhancement


    Beteiligte:
    Carbonaro, A. (Autor:in) / Zingaretti, P. (Autor:in)


    Erscheinungsdatum :

    01.01.1999


    Format / Umfang :

    2984976 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Comprehensive Approach to Image-Contrast Enhancement

    Carbonaro, A. / Zingaretti, P. / IEEE | British Library Conference Proceedings | 1999


    Contrast Enhancement via Image Evolution Flows

    Sapiro, G. / Caselles, V. | British Library Online Contents | 1997


    Multiobjectives bihistogram equalization for image contrast enhancement

    Hum, Y. C. / Lai, K. W. / Mohamad Salim, M. I. | British Library Online Contents | 2014


    Local image contrast enhancement under nonuniform illumination

    Linan, J. / Zhaoyun, S. / Aimin, S. et al. | British Library Conference Proceedings | 2009