Automated Vehicles are envisioned to transform the future industrial and private transportation sectors. However, due to the system's enormous complexity, functional verification and validation of safety aspects are essential before the technology merges into the public domain. In recent years, a scenario-driven approach has gained acceptance, emphasizing the requirement of a solid data basis of scenarios. The large-scale research facility Test Bed Lower Saxony (TFNDS) of the German Aerospace Center (DLR) enables the provision of ample information for a database of scenarios on highways. For that purpose, however, the scenarios of interest must be identified and extracted from the collected Naturalistic Trajectory Data (NTD). This work addresses this problem and proposes a methodology for on-ramp scenario extraction, enabling scenario categorization and assessment. A Hidden Markov Model and Dynamic Time Warping is utilized for extraction and a decision tree with the Surrogate Measure of Safety Post Encroachment Time for categorization and assessment. The efficacy of the approach is shown with a dataset of NTD collected on the TFNDS.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Extraction and Analysis of Highway On-Ramp Merging Scenarios from Naturalistic Trajectory Data


    Beteiligte:
    Klitzke, Lars (Autor:in) / Gimm, Kay (Autor:in) / Koch, Carsten (Autor:in) / Koster, Frank (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    2350156 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Lane Change Trajectory Prediction Based on Chinese Highway Ramp Scenarios

    Qiu, ChunLong / Zhou, Shanxing / Liu, Haoji et al. | IEEE | 2023


    Highway ramp merging safety early warning system

    HUANG SONGSHAN / ZHOU LIN / WANG ZUN | Europäisches Patentamt | 2023

    Freier Zugriff

    Freeway merging trajectory prediction for automated vehicles using naturalistic driving data

    Ye, Xinchen / Wang, Xuesong / Wang, Xiaomeng et al. | Elsevier | 2024

    Freier Zugriff

    Trajectory Prediction with Observations of Variable-Length for Motion Planning in Highway Merging Scenarios

    Mozaffari, Sajjad / Sormoli, MReza Alipour / Koufos, Konstantinos et al. | IEEE | 2023


    Review of driver behaviour modelling for highway on‐ramp merging

    Zine el abidine Kherroubi / Samir Aknine | DOAJ | 2024

    Freier Zugriff